Critical Review of the Literature
2017-2018

Sophie Argon, Pharm D
Research Scientist
e-PKGene Project Manager
Drug Interaction Database Program
School of Pharmacy
University of Washington

21st International Conference on Drug-Drug Interactions
Seattle, June 14th – 16th 2018
Outline

1- DDI Publications: What is new in 2017-2018?
 - Publications: updates and trends
 - Most pronounced clinical DDIs
 - Transporter-based clinical DDIs

2- 2017-2018 Highlight: Example of *in vivo* gene-drug-drug-interactions (GDDIs)
 - “Notable Drug-Drug Interaction Between Etizolam and Itraconazole in Poor Metabolizers of Cytochrome P450 2C19.”
Number of Publications Entered in UW DIDB Platform

- Decrease in number of publications in past few years
- However, each publication now includes more studies
Top 10 Journals (2017) contribute ~43% of the published articles

<table>
<thead>
<tr>
<th>Journal</th>
<th>Number of Articles</th>
<th>Overall Percentage</th>
<th>Primary focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug Metab Dispos</td>
<td>48</td>
<td>9.1</td>
<td>in vitro</td>
</tr>
<tr>
<td>Xenobiotica</td>
<td>36</td>
<td>6.8</td>
<td>in vitro</td>
</tr>
<tr>
<td>J Pharm Sci</td>
<td>28</td>
<td>5.3</td>
<td>in vitro</td>
</tr>
<tr>
<td>Br J Clin Pharmacol</td>
<td>23</td>
<td>4.4</td>
<td>in vivo</td>
</tr>
<tr>
<td>J Clin Pharmacol</td>
<td>20</td>
<td>3.8</td>
<td>in vivo</td>
</tr>
<tr>
<td>Clin Pharmacol Drug Dev</td>
<td>19</td>
<td>3.6</td>
<td>in vivo</td>
</tr>
<tr>
<td>Antimicrob Agents Chemother</td>
<td>15</td>
<td>2.8</td>
<td>in vivo</td>
</tr>
<tr>
<td>Eur J Drug Metab Pharmacokinet</td>
<td>14</td>
<td>2.6</td>
<td>in vitro / in vivo</td>
</tr>
<tr>
<td>Eur J Clin Pharmacol</td>
<td>12</td>
<td>2.3</td>
<td>in vivo</td>
</tr>
<tr>
<td>Biopharm Drug Dispos</td>
<td>11</td>
<td>2.0</td>
<td>in vitro / in vivo</td>
</tr>
</tbody>
</table>

- Changes in the journals’ scientific coverage in recent years
- DDI publications seem to be distributed more broadly
Types of Articles* (2010-2017)

Number of Publications

Recent decrease in number of publications is observed for all types of citations

*articles can contain both *in vitro* and *in vivo* studies
Types of Articles* (2010-2017)

Number of Studies

Overall amount of information (i.e. number of studies) relatively stable

*articles can contain both *in vitro* and *in vivo* studies
Articles 2017-2018

642* articles

- in vivo: 46% of articles
- in vitro: 58% of articles

Enzymes (53%)
- Metabolism 34%
- Inhibition 51%
- Induction 13%
- Activation 2%

Transporters (47%)
- Substrates 46%
- Inhibition 54%

- There are 25% more in vitro than in vivo articles
- Among in vitro papers, transporter-based DDIs are catching up with metabolism-based DDIs

*23 articles contain both in vivo and in vitro information and are included in each category
Articles 2017-2018

642* articles

in vivo: 46% of articles

Inhibition 50%
Positive: 57%
Negative: 43%

Induction 15%
Positive: 57%
Negative: 43%

Other Mechanisms 6%
Positive: 57%
Negative: 43%

Single drug PK 29%

Organ impairment: 59%
Food-Effect: 41%

in vitro: 58% of articles

*23 articles contain both in vivo and in vitro information and are included in each category
Case Reports of Toxicity (N = 20) victims involved

65% of the victims are NTI drugs

- Immunosuppressant (tacrolimus, everolimus)
- Cancer treatments (busulfan, docetaxel, vinblastine)
- Anticoagulants (rivaroxaban, warfarin)
- Mood stabilizers (lithium)
Case Reports of Toxicity (N = 20) perpetrators involved

70% due to anti-infective drugs
- ertapenem, flucloxacillin, meropenem, moxifloxacin, nafcillin, rifampin
- HCV and HIV drugs
- fluconazole, voriconazole

20% due to natural products
clementine, turmeric, Ginkgo biloba, garlic
Outline

1- DDI Publications: What is new in 2017-2018?
 Publications: updates and trends
 Most pronounced clinical DDIs
 Transporter-based clinical DDIs

2- 2017-2018 Highlight: Example of in vivo gene-drug-drug-interactions (GDDIs)
 “Notable Drug-Drug Interaction Between Etizolam and Itraconazole in Poor Metabolizers of Cytochrome P450 2C19.”
Most Pronounced Clinical Inhibitions (Top 10)

<table>
<thead>
<tr>
<th>Victim</th>
<th>Inhibitor</th>
<th>Enzymes / Transporters</th>
<th>Victim AUC ratio</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>trifluridine</td>
<td>tipiracil</td>
<td>thymidine phosphorylase</td>
<td>35.2</td>
<td>Cleary, 2017</td>
</tr>
<tr>
<td>dextromethorphan</td>
<td>GSK1034702</td>
<td>CYP2D6</td>
<td>21.8</td>
<td>Hobbs, 2017</td>
</tr>
<tr>
<td>ivacaftor</td>
<td>ritonavir</td>
<td>CYP3A</td>
<td>19.7</td>
<td>Liddy, 2017</td>
</tr>
<tr>
<td>rosuvastatin</td>
<td>faldaprevir</td>
<td>OATP1B1/1B3</td>
<td>14.7</td>
<td>Huang, 2017</td>
</tr>
<tr>
<td>venetoclax</td>
<td>posaconazole</td>
<td>CYP3A</td>
<td>9.7</td>
<td>Agarwal, 2017</td>
</tr>
<tr>
<td>atorvastatin</td>
<td>faldaprevir</td>
<td>OATP1B1/1B3</td>
<td>9.4</td>
<td>Huang, 2017</td>
</tr>
<tr>
<td>atorvastatin</td>
<td>rifampin SD</td>
<td>OATP1B1/1B3</td>
<td>8.6</td>
<td>Prueksaritanont, 2017</td>
</tr>
<tr>
<td>venetoclax</td>
<td>ketoconazole</td>
<td>CYP3A, (P-gp, BCRP)</td>
<td>7.9</td>
<td>Agarwal, 2017</td>
</tr>
<tr>
<td>pibrentasvir</td>
<td>glecaprevir</td>
<td>P-gp, BCRP</td>
<td>7.5</td>
<td>Lin, 2018</td>
</tr>
<tr>
<td>simeprevir</td>
<td>rifampin SD</td>
<td>OATP1B1/1B3</td>
<td>7.4</td>
<td>Yoshikado, 2017</td>
</tr>
<tr>
<td>midazolam</td>
<td>itraconazole</td>
<td>CYP3A</td>
<td>7.1</td>
<td>Prueksaritanont, 2017</td>
</tr>
</tbody>
</table>

- Transporters (OATP1B1/1B3 inhibition) contribute as much as metabolic enzymes
- Most perpetrators are anti-infective drugs (consistent with role of antibiotics in previous slide)
- All victims are marker or sensitive substrates
Most Pronounced Clinical Inductions (Top 10)

<table>
<thead>
<tr>
<th>Victim</th>
<th>Inducer</th>
<th>Enzymes / Transporters possibly involved</th>
<th>Victim AUC ratio</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>isavuconazole</td>
<td>rifampin</td>
<td>CYP3A</td>
<td>0.12</td>
<td>Townsend, 2017</td>
</tr>
<tr>
<td>doravirine</td>
<td>rifampin</td>
<td>CYP3A</td>
<td>0.13</td>
<td>Yee, 2017</td>
</tr>
<tr>
<td>odanacatib</td>
<td>rifampin</td>
<td>CYP3A, P-gp</td>
<td>0.16</td>
<td>Stoch, 2017</td>
</tr>
<tr>
<td>omeprazole</td>
<td>rifampin</td>
<td>CYP3A, CYP2C19</td>
<td>0.17</td>
<td>Park, 2017</td>
</tr>
<tr>
<td>amenamevir</td>
<td>rifampin</td>
<td>CYP3A</td>
<td>0.17</td>
<td>Kusawake, 2017</td>
</tr>
<tr>
<td>apatinib</td>
<td>rifampin</td>
<td>CYP3A</td>
<td>0.19</td>
<td>Liu, 2018</td>
</tr>
<tr>
<td>istradiesseline</td>
<td>rifampin</td>
<td>CYP3A, CYP2B6, CYP2C8, CYP2C9</td>
<td>0.26</td>
<td>Mukai, 2018</td>
</tr>
<tr>
<td>alectinib</td>
<td>rifampin</td>
<td>CYP3A</td>
<td>0.26</td>
<td>Morcos, 2017</td>
</tr>
<tr>
<td>ixazomib</td>
<td>rifampin</td>
<td>CYP1A2, CYP2B6, other enzymes, P-gp</td>
<td>0.27</td>
<td>Gupta, 2018</td>
</tr>
<tr>
<td>sonidegib</td>
<td>rifampin</td>
<td>CYP3A</td>
<td>0.29</td>
<td>Einolf, 2017</td>
</tr>
</tbody>
</table>

- CYP3A induction is the predominant mechanism
- All most pronounced inductions are due to rifampin
- Victims: mostly cancer treatments and anti-infective drugs
Outline

1- DDI Publications: What is new in 2017-2018?
 Publications: updates and trends
 Most pronounced clinical DDIs
 Transporter-based clinical DDIs

2- 2017-2018 Highlight: Example of in vivo gene-drug-drug-interactions (GDDIs)
 “Notable Drug-Drug Interaction Between Etizolam and Itraconazole in Poor Metabolizers of Cytochrome P450 2C19.”
In vivo Articles Discussing Role of Transporters in DDIs

- P-gp: 25%
- BCRP: 20%
- OATP1B1: 17%
- OATP1B3: 13%
- OATP2B1: 13%
- OCT1: 2%
- OCT2: 2%
- MATE1: 1%
- URAT1: 4%
- OAT3: 1%
- OAT1: 1%

All OATPs: 44% of articles discuss at least one OATP transporter

P-gp and BCRP: significant contributors to clinical DDIs
P-gp Related Inhibition

<table>
<thead>
<tr>
<th>Victim</th>
<th>Perpetrator</th>
<th>Perpetrator Dose (oral)</th>
<th>Victim AUC ratio</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dabigatran E (µ dose)</td>
<td>itraconazole</td>
<td>200 mg QD [5 days]</td>
<td>6.9</td>
<td>Prueksaritanont, 2017</td>
</tr>
<tr>
<td>dabigatran E (µ dose)</td>
<td>clarithromycin</td>
<td>500 mg BID [5 days]</td>
<td>4.0</td>
<td>Prueksaritanont, 2017</td>
</tr>
<tr>
<td>dabigatran E</td>
<td>cobicistat</td>
<td>150 mg QD [22 days]</td>
<td>2.4</td>
<td>Kumar, 2017</td>
</tr>
<tr>
<td>dabigatran E</td>
<td>rifampin</td>
<td>600 mg SD</td>
<td>2.3</td>
<td>Prueksaritanont, 2017</td>
</tr>
<tr>
<td>dabigatran E</td>
<td>clarithromycin</td>
<td>500 mg BID [5 days]</td>
<td>2.1</td>
<td>Gouin-Thibault, 2017</td>
</tr>
<tr>
<td>digoxin</td>
<td>rolapitant</td>
<td>180 mg SD</td>
<td>1.3</td>
<td>Wang, 2018</td>
</tr>
<tr>
<td>digoxin</td>
<td>mirabegron</td>
<td>100 mg QD [14 days]</td>
<td>1.3</td>
<td>Groen-Wijnberg, 2017</td>
</tr>
<tr>
<td>fexofenadine</td>
<td>piperine</td>
<td>20 mg QD [10 days]</td>
<td>1.7</td>
<td>Bedada, 2017</td>
</tr>
<tr>
<td>fexofenadine</td>
<td>diosmin</td>
<td>150 mg QD [10 days]</td>
<td>1.7</td>
<td>Bedada, 2017</td>
</tr>
<tr>
<td>Co-Meds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simeprevir*; Y</td>
<td>ledipasvir</td>
<td>90 mg QD [14 days]</td>
<td>3.0</td>
<td>Bourgeois, 2017</td>
</tr>
<tr>
<td>rivaroxaban</td>
<td>clarithromycin</td>
<td>500 mg BID [5 days]</td>
<td>2.1</td>
<td>Gouin-Thibault, 2017</td>
</tr>
<tr>
<td>rosvastatin*</td>
<td>itraconazole</td>
<td>200 mg QD [5 days]</td>
<td>1.8</td>
<td>Prueksaritanont, 2017</td>
</tr>
<tr>
<td>glecaprevir*; Y</td>
<td>pibrentasvir</td>
<td>160 mg QD [7 days]</td>
<td>1.8</td>
<td>Lin, 2018</td>
</tr>
<tr>
<td>ledipasvir Y</td>
<td>simeprevir</td>
<td>150 mg QD [14 days]</td>
<td>1.7</td>
<td>Bourgeois, 2017</td>
</tr>
<tr>
<td>atorvastatin</td>
<td>isavuconazole</td>
<td>200 mg TID [8 days]</td>
<td>1.3</td>
<td>Yamazaki, 2017</td>
</tr>
<tr>
<td>peficitinib</td>
<td>verapamil</td>
<td>80 mg TID [10 days]</td>
<td>1.3</td>
<td>Zhu, 2017</td>
</tr>
</tbody>
</table>

*BCRP also involved; YOATPs also involved

P-gp related inhibition rarely over 2-fold except with dabigatran etexilate
Recent publications evaluate the use of endogenous compounds (coproporphyrin I and III) as potential specific OATP1B markers to study OATP1B-related clinical inhibition.
Hepatic OATP-Related Inhibition

<table>
<thead>
<tr>
<th>Victim</th>
<th>Perpetrator</th>
<th>Perpetrator dose (oral)</th>
<th>Victim AUC ratio</th>
<th>Transporter(s) involved</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>simeprevir</td>
<td>rifampin</td>
<td>600 mg SD</td>
<td>7.2</td>
<td>OATP1B</td>
<td>Yoshikado, 2017</td>
</tr>
<tr>
<td>leterminvir</td>
<td>cyclosporine</td>
<td>200 mg SD</td>
<td>3.4</td>
<td>OATP1B P-gp, BCRP</td>
<td>Kropiet, 2018</td>
</tr>
<tr>
<td>bosentan</td>
<td>rifampin</td>
<td>600 mg SD</td>
<td>3.2</td>
<td>OATP1B</td>
<td>Yoshikado, 2017</td>
</tr>
<tr>
<td>selexipag</td>
<td>gemfibrozil</td>
<td>600 mg BID [9 days]</td>
<td>2.0</td>
<td>OATP1B</td>
<td>Bruderer, 2017</td>
</tr>
<tr>
<td>clarithromycin</td>
<td>rifampin</td>
<td>600 mg SD</td>
<td>1.9</td>
<td>OATP1B</td>
<td>Yoshikado, 2017</td>
</tr>
<tr>
<td>glecaprevir</td>
<td>pibrentasvir</td>
<td>160 mg QD [7 days]</td>
<td>1.8</td>
<td>OATP1B P-gp, BCRP</td>
<td>Lin, 2018</td>
</tr>
</tbody>
</table>

Inhibition of hepatic OATPs can lead to significant increases in substrate exposures
Intestinal OATP2B1-Related Inhibition

<table>
<thead>
<tr>
<th>Victim</th>
<th>Perpetrator</th>
<th>Perpetrator Dose (oral)</th>
<th>Victim AUC ratio</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>glibenclamide</td>
<td>grapefruit juice</td>
<td>200 mL TID [3 days]</td>
<td>0.5</td>
<td>Kashihara, 2017</td>
</tr>
<tr>
<td>rosuvastatin</td>
<td>ronacaleret</td>
<td>400 mg QD [10 days]</td>
<td>0.5</td>
<td>Johnson, 2017</td>
</tr>
<tr>
<td>celiprolol</td>
<td>grapefruit juice</td>
<td>200 mL TID [3 days]</td>
<td>0.6</td>
<td>Kashihara, 2017</td>
</tr>
<tr>
<td>rosuvastatin</td>
<td>grapefruit juice</td>
<td>200 mL TID [3 days]</td>
<td>0.7</td>
<td>Kashihara, 2017</td>
</tr>
<tr>
<td>sulfasalazine</td>
<td>grapefruit juice</td>
<td>200 mL TID [3 days]</td>
<td>0.7</td>
<td>Kashihara, 2017</td>
</tr>
<tr>
<td>sumatriptan</td>
<td>grapefruit juice</td>
<td>200 mL TID [3 days]</td>
<td>0.7</td>
<td>Kashihara, 2017</td>
</tr>
<tr>
<td>rosuvastatin</td>
<td>epigallocatechin gallate</td>
<td>300 mg SD</td>
<td>0.8</td>
<td>Kim, 2017</td>
</tr>
</tbody>
</table>

Ronacaleret: investigational drug candidate for treatment of osteoporosis (now terminated)
Glibenclamide, rosuvastatin and sulfasalazine are dual substrates for OATP2B1 and BCRP

Inhibitors of intestinal OATP2B1 are mostly natural products
DDI Publications 2017-2018: Conclusions

- **Literature**
 Overall, same amount of information available despite a decrease in number in published articles
 More *in vitro* transport data becoming available

- **Most pronounced clinical interactions**
 Inhibition: significant contribution of hepatic OATPs
 Induction: rifampin used as a multi-CYP inducer

- **Transporter-based DDIs**
 Investigation of new potential endogenous markers for OAPT1B-based DDIs
Outline

1- DDI Publications: What is new in 2017-2018?
 Publications: updates and trends
 Most pronounced clinical DDIs
 Transporter-based clinical DDIs

2- 2017-2018 Highlight: Example of in vivo gene-drug-drug-interactions (GDDIs)

 “Notable Drug-Drug Interaction Between Etizolam and Itraconazole in Poor Metabolizers of Cytochrome P450 2C19.”
Example of Gene-Drug-Drug-Drug-Interactions (GDDIs)

Case Study

Notable Drug-Drug Interaction Between Etizolam and Itraconazole in Poor Metabolizers of Cytochrome P450 2C19.

DDI Between Etizolam and Itraconazole in CYP2C19 Poor Metabolizers

Victim: etizolam
- Thienodiazepine
- Anxiety disorder with depression, panic disorder and insomnia
- Relatively safe - low abuse potential
- Marketed in Italy, South Korea and Japan
- One of the most prescribed benzodiazepines in Japan
- Metabolism*: CYP2C19 and CYP3A

Perpetrator: itraconazole
- Antifungal
- Strong CYP3A inhibitor

CYP2C19 polymorphisms
- Japanese: ~20% are poor Metabolizers

*Ref: In vitro: Niwa, 2005
In vivo: Araki, 2004; Suzuki, 2004; Kondo, 2005; Fukasama, 2005
DDI Between Etizolam and Itraconazole in CYP2C19 Poor Metabolizers

in vitro experiments: estimation of etizolam $f_{m_{CYP3A}}$

Experiments
- Human liver microsomes prepared from CYP2C19 PM donors
- Etizolam: 0.2 or 1.0 μM
- Itraconazole: 0, 0.0015, 0.56, 1.4, 3.5, or 8.7 μM

Results: fraction metabolized by CYP3A
- $f_{m_{CYP3A}}$ etizolam: 0.60 ± 0.06
- $K_{i_{, itraconazole}}$: 0.73 ± 0.28 μM

Based on the estimated f_{m} value, the magnitude of increase in AUC_∞ was estimated 2.5-fold *in vivo.*
DDI Between Etizolam and Itraconazole in CYP2C19 Poor Metabolizers

in vivo study

Subjects and study design:
16 healthy male Japanese volunteers: CYP2C19 EMs (N = 8) CYP2C19 PMs (N = 8)

Fixed-sequence

Etizolam administration
0.25 mg single dose (9:00 am) alone on Day 1 and with itraconazole on Day 5

Itraconazole administration
200 mg twice daily (9:00 am and 9:00 pm) on Days 2-5
DDI Between Etizolam and Itraconazole in CYP2C19 Poor Metabolizers

Results

Predicted magnitude of AUC increase in PMs (2.5-fold) consistent with the observed increase in vivo.

Itraconazole exposure similar between EM and PM
Etizolam intestinal availability similar between EM and PM

Authors’ Conclusion

➢ Magnitude of DDI between etizolam and itraconazole is dependent upon CYP2C19 genotype

➢ Prediction of the extent of DDI expected in PMs may be determined via *in vitro* measurements of f_m using HLM (or cryopreserved human hepatocytes) from PM donors

➢ PGx testing of patients may be useful to manage these genotype-dependent DDIs.
Inhibition of Secondary Clearance Pathway

CYP2C19 EM
- etizolam → CYP2C19 → 8-ethylhydroxy etizolam → α-hydroxy etizolam
- itraconazole inhibits CYP3A

AUC increase in etizolam: 1.66-fold

CYP2C19 PM
- etizolam → CYP2C19 → 8-ethylhydroxy etizolam → α-hydroxy etizolam
- itraconazole inhibits CYP3A

AUC increase in etizolam: 2.34-fold

Maximum increase in etizolam exposure: 6.18-fold
(exetizolam administered after the introduction of itraconazole)
Scenarios Where PGx Critically Affects the Extent of DDIs

Inhibition of Primary Clearance Pathway

CYP2D6 EM

- CYP2C19
- CYP3A

venlafaxine

CYP2D6 PM

- CYP2C19
- CYP3A

venlafaxine

quinidine

N-desmethyl venlafaxine

O-desmethyl venlafaxine (active metabolite)

N-desmethyl venlafaxine

O-desmethyl Venlafaxine (active metabolite)

AUC increase in venlafaxine exposure:
(R)-VEN: 12.2-fold; (S)-VEN: 3.8-fold

No effect on venlafaxine AUC
(R)-VEN: 0.99-fold; (S)-VEN: 1.15-fold

Maximum increase in venlafaxine exposure:
(R)-VEN: 12.2-fold; (S)-VEN: 3.8-fold

(VEN administered after the introduction of quinidine)

Genotype affects Concentrations of Perpetrator Tacrolimus

CYP2C19 EM

\[\text{tacrolimus} \xrightarrow{\text{CYP3A}} M_{\text{Tac}} \xrightarrow{\text{CYP3A}} \text{4-hydroxy voriconazole} \]

voriconazole

AUC increase in tacrolimus: 4.4-fold

CYP2C19 PM

\[\text{tacrolimus} \xrightarrow{\text{CYP3A}} M_{\text{Tac}} \xrightarrow{\text{CYP3A}} \text{4-hydroxy voriconazole} \]

voriconazole

AUC increase in tacrolimus: 6.0-fold

Maximum increase in tacrolimus exposure: 6.5-fold
(tacrolimus administered after the introduction of voriconazole)

Scenarios Where PGx Critically Affects the Extent of DDIs
PGx affects Elimination of Active Metabolite

CYP2C19 EM

- clobazam
 - CYP3A
 - CYP2C19
 - N-desmethylclobazam (active metabolite)
 - 4-hydroxy-N-desmethylclobazam

 AUC increase in NDCBZ: 4.5-fold

 CYP2C19 PM

- clobazam
 - CYP3A
 - CYP2C19
 - N-desmethylclobazam (active metabolite)
 - 4-hydroxy-N-desmethylclobazam

 No effect: 1.04-fold increase in NDCBZ

Maximum increase in N-desmethylclobazam exposure: 15.5-fold
(clobazam administered after the introduction of stiripentol)
Example of Gene-Drug-Drug-Drug-Interactions (GDDIs)

Conclusions

- Clinical trials evaluating the interplay of gene-drug together with drug-drug interaction are difficult to implement.
- GDDIs are often identified via case reports of toxicity.
- Both EM and/or PM subjects might be affected by DDI depending on the underlying mechanism.
- Extent of the GDDI depends on the timing of the victim first administration relative to the perpetrator.
- *In vitro*-based predictions represent a useful tool to evaluate these often complex clinical situations.
Acknowledgments

- Dr. Isabelle RAGUENEAU-MAJLESSI
- Dr. Jingjing YU
- Dr. Rene LEVY
- Dr. Katie OWENS
- Dr. Ichiko PETRIE
- Dr. Tasha RITCHIE
- Dr. Jessica SONTHEIMER
- Dr. Cheryl WU
- Dr. Cathy YEUNG
- Grace LEE
- Chris KINSELLA
Thank you!

Questions?